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The accurate and efficient computation of lattice sums for the three-dimensional Helm-
holtz equation is considered for the cases where the underlying lattice is one- or two-
dimensional. We demonstrate, using careful numerical computations, that the reduction
method, in which the sums for a two-dimensional lattice are expressed as a sum of one-
dimensional lattice sums leads to an order-of-magnitude improvement in performance
over the well-known Ewald method. In the process we clarify and improve on a number
of results originally formulated by Twersky in the 1970s.
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1. Introduction

Lattice sums of the type considered in this paper arise naturally in two different ways. On the one hand, problems involv-
ing scattering by either a sheet or a line of spheres can be reduced to linear systems of equations in which the elements of the
coefficient matrix involve lattice sums. Alternatively, lattice sums can used as part of an efficient scheme for the computation
of the quasi-periodic Green’s function which is required when solving more general scattering problems using integral equa-
tions. An example of this second use (for three-dimensional lattices) can be found in [1].

Our particular interest is in the lattice sums which arise when considering acoustic scattering by a sheet of spheres, a
problem first considered over 30 years ago by Twersky [2–4]. No numerical results were presented in these papers (the focus
was on deriving analytic properties of the solutions and approximate formulas valid for small spheres or low frequencies)
and, moreover, the machinery that Twersky uses is elaborate and (in our opinion) difficult to follow. The equivalent electro-
magnetic problem has also been considered in the context of low energy electron diffraction (e.g., [5]) and a formulation
based on lattice sums is given in [6] and used in [7]. However, the computation of the lattice sums was not emphasised;
instead reference was made to FORTRAN codes published in [8].

Lattice sums have independent mathematical interest and since the papers above were published, considerable progress
has been made in devising efficient methods for their computation. Calculating lattice sums accurately and efficiently is still
something of a challenge, but as computing power increases and new analytic representations are developed, their useful-
ness in practical applications becomes more and more apparent. A unified treatment of lattice sums in two and three dimen-
sions, for the cases where the lattice dimension is less than the dimension of the underlying space, is given in [9]. Particular
focus is given there to the method of Ewald summation, which yields exponentially convergent series representations for the
. All rights reserved.
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lattice sums. For the case of a two-dimensional lattice in three dimensions this representation involves the incomplete Gam-
ma function with negative real argument, the evaluation of which is not trivial [10].

An alternative approach, and the one we pursue here, is to express the two-dimensional lattice sum as an infinite sum of
one-dimensional sums. This idea, which we call lattice reduction, has received considerable attention in recent years (e.g.,
[11–13]) and appears to have a number of advantages. In fact it was used by Twersky [3] (though Twersky’s paper is not
cited in any of the above). One-dimensional lattice sums have received much less attention than two-dimensional ones, lar-
gely because the associated physical problems do not lead so easily to applications. However, such applications do exist
[14,15]. In [12], these lattice sums are represented as infinite, exponentially convergent contour integrals, but simpler
expressions are available, again based on earlier work by Twersky [16].

In this article we have attempted to draw together much of this earlier work and present an accurate and efficient method
for computing two-dimensional lattice sums when the governing equation is the three-dimensional Helmholtz equation.
Many of the expressions that we use can be found in Twersky’s papers, but these do not appear to be widely read (they
are certainly difficult to follow) and, more importantly, the results do not appear to be widely known.

The plan of the paper is as follows. We begin in Section 2 with a description of our notation and conventions. This is a vital
aspect of this type of work since poor notation leads to significant confusion for those trying to follow. We have been very
careful to define precisely spherical harmonics and associated Legendre functions, as different authors use different defini-
tions. We also describe some of the basic properties of lattice sums. In Section 3 we examine one-dimensional sums and
show that they can be written as rapidly convergent series. Two-dimensional sums are treated in Section 4 and we begin
by stating Ewald formulas, which we use to check our numerical calculations. Then we show how lattice reduction can
be used to express these two-dimensional sums in terms of one-dimensional sums. Interestingly, when we sum over these
one-dimensional sums we are led to lattice sums which are appropriate for one-dimensional lattices in two dimensions, and
these can be computed efficiently, again using results of Twersky [17]. Lattice sums possess singularities (these correspond
in a physical scattering problem to combinations of frequency and incident wave angle where modes cut on and off, which in
turn lead to the observed Wood anomalies [18], and the places where these occur differ for one- and two-dimensional lat-
tices. These singularities are made explicit in our analysis as this can greatly facilitate the calculation of the response at or
near these resonances (see, e.g., [19]). Care must be taken when using lattice reduction as this introduces artificial singular-
ities and we show how these can be successfully removed. Numerical results are presented in Section 5 and concluding re-
marks can be found in Section 6.

2. Preliminaries

2.1. Wave functions

We are concerned with time-harmonic waves governed by the three-dimensional Helmholtz equation
ðr2 þ k2Þu ¼ 0; ð2:1Þ
where k ¼ x=c with x the angular frequency and c the speed of sound. A solution to (2.1) is termed a wave function. In par-
ticular we will use the notation
J m
n ðrÞ ¼ jnðkrÞYm

n ðr̂Þ; Ym
n ðrÞ ¼ ynðkrÞYm

n ðr̂Þ and Hm
n ðrÞ ¼ hnðkrÞYm

n ðr̂Þ; ð2:2Þ
for, respectively, regular, singular, and outgoing spherical wave functions. Here r ¼ rr̂, jnð�Þ, ynð�Þ and hnð�Þ � hð1Þn ð�Þ are,
respectively, spherical Bessel functions of the first and second kind, and spherical Hankel functions of the first kind, and
Ym

n are spherical harmonics defined by
Ym
n ðr̂Þ � Ym

n ðh;/Þ ¼ ð�1ÞmknmPm
n ðcos hÞeim/; n P jmjP 0; ð2:3Þ
where
knm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn�mÞ!

4pðnþmÞ!

s
: ð2:4Þ
Care needs to be taken over the definition of the associated Legendre functions Pm
n ð�Þ; the conventions we use are described in

Appendix A.
We note that
Ym
n ðr̂Þ ¼ ð�1ÞmY�m

n ðr̂Þ; Ym
n ð�r̂Þ ¼ ð�1ÞnYm

n ðr̂Þ; ð2:5ÞZ
X

Ym
n Yl

m dX ¼ dnmdml; ð2:6Þ
the integral being over the unit sphere, and we have the expansion [20, Theorem 3.16]
H0
0ðr� r0Þ ¼ 4p

X
n;m

ð�1ÞmJ m
n ðrÞH�m

n ðr0Þ; jrj < jr0j; ð2:7Þ
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where we have introduced the shorthand notation
X
n;m

�
X1
n¼0

Xn

m¼�n

:

2.2. Lattices

A lattice K of dimension d is defined by the position vectors
Rn ¼
Xd

i¼1

niai; ni 2 Z: ð2:8Þ
Here n ¼ ðn1; . . . ;ndÞ is a multi-index. We will only be concerned here with the cases d ¼ 1 and d ¼ 2. If d ¼ 2, the vectors ai

are not necessarily orthogonal (though they are linearly independent) and need not have the same length. In the d ¼ 1 case
we will drop the subscripts and a ¼ jaj is the spacing between the lattice points. Reciprocal lattice vectors are
Kn ¼ 2p
Xd

i¼1

nibi; ni 2 Z; ð2:9Þ
where
ai � bj ¼ dij; i; j ¼ 1; . . . ;d: ð2:10Þ
If d ¼ 1, we have b ¼ a=a2 and in all cases
Rn � Km ¼ 2Np for some integer N: ð2:11Þ
The reciprocal lattice will be denoted by K�. If we have a lattice K then we can define a quantity A as the length (d ¼ 1) or
area (d ¼ 2) of a unit cell. Explicitly
A ¼
jaj d ¼ 1
ja1 � a2j d ¼ 2:

�
ð2:12Þ
The length (area) of a unit cell of the reciprocal lattice is, in each case, A�1.

2.3. Quasi-periodic Green’s functions

A point source at r0 will be represented by G0ðr; r0Þ. Thus
G0ðr; r0Þ ¼ � expðikqÞ
4pq

¼ � ik
4p

h0ðkqÞ ¼ �
ik
4p

H0
0ðr� r0Þ; ð2:13Þ
where q ¼ jr� r0 j, and we have
ðr2 þ k2ÞG0 ¼ dðr� r0Þ; ð2:14Þ
with G0 behaving like an outgoing wave as jrj ! 1.
A quasi-periodic Green’s function is an array of such sources modulated by a phase factor governed by the vector b. We

write this formally as
GKðr; bÞ ¼
X
Rn2K

G0ðr; RnÞeib�Rn : ð2:15Þ
Without loss of generality, we can assume that b lies in the space spanned by the lattice vectors ai. Moreover, it follows from
(2.11) that we can restrict b to a single cell of the reciprocal lattice. If Rn 2 K,
GKðrþ Rn; bÞ ¼ eib�Rn GKðr; bÞ; ð2:16Þ
illustrating the quasi-periodic nature of GK. We also define
bn ¼ bþ Kn; bn ¼ jbnj; an ¼ arg bn; Rn ¼ jRnj: ð2:17Þ
2.4. Lattice sums

We define lattice sums rm
n formally by
rm
n ðbÞ ¼

X0
Rj2K

eib�RjHm
n ðRjÞ ¼ ð�1Þnrm

n ð�bÞ: ð2:18Þ



1818 C.M. Linton, I. Thompson / Journal of Computational Physics 228 (2009) 1815–1829
The dash on the summation sign indicates that the Rj ¼ 0 term is to be omitted. The effect at the origin of a phased array of
wave functions at all the lattice sites other than the origin, the phase factor at Rj being expðib � RjÞ, is then rm

n ð�bÞ (to see this
simply replace Rj by �Rj in the definition). The summation in (2.18) is conditionally convergent and so the order in which
this is carried out is potentially critical. In one dimension the order is implied but in two dimensions it is not and if numerical
computations were to be made from (2.18) this would be a serious issue (see, e.g., [21]). For particular values of b and k the
sums are in fact singular due to phase cancellation; these singularities will be considered in detail later.

The lattice sums can also be thought of as the coefficients in the expansion about the origin of the regular part of the qua-
si-periodic Green’s function. Thus, it can be shown from (2.15), using (2.7), that for r < n �minRj2K;Rj–0Rj
GKðr; bÞ � G0ðr; 0Þ ¼ �ik
X
n;m

ð�1Þmr�m
n ðbÞJ m

n ðrÞ: ð2:19Þ
Note that the lattice sums (unlike GK and G0) depend on the choice of polar axis for the spherical harmonics. The represen-
tation (2.19) can be used to evaluate GK if the lattice sums can be evaluated easily. This is particularly useful in cases where
the value of GK is required at many different spatial points since the lattice sums are independent of position.

We have, using the orthogonality of the spherical harmonics (2.6),
rm
n ðbÞjnðkrÞ ¼ i

k

Z
Xðr̂Þ
ðGKðr; bÞ � G0ðr; 0ÞÞYm

n ðr̂ÞdX; ð2:20Þ
the integral being over the unit sphere.
It will be useful to introduce the associated J - and Y-series defined by
rmJ
n ðbÞ ¼

X0
Rj2K

eib�RjJ m
n ðRjÞ; rmY

n ðbÞ ¼
X0
Rj2K

eib�RjYm
n ðRjÞ; ð2:21Þ
so that
rm
n ¼ rmJ

n þ irmY
n : ð2:22Þ
A simple calculation reveals that
2rmJ
n ðbÞ ¼ rm

n ðbÞ þ ð�1Þnþmr�m
n ðbÞ; ð2:23Þ

2irmY
n ðbÞ ¼ rm

n ðbÞ � ð�1Þnþmr�m
n ðbÞ: ð2:24Þ
3. One-dimensional lattice sums

If d ¼ 1 we can choose the lattice to lie on the axis of the spherical coordinate system (defined by the unit vector ez) so
that on the lattice, h ¼ 0 or p. In that case Ym

n ðR̂jÞ ¼ 0 unless m ¼ 0 (see (A.6) and so
rm
n ðbÞ ¼ 0; if m–0: ð3:1Þ
We set b ¼ bez and write ‘nðbÞ for r0
nðbÞ. This will aid clarity since the one-dimensional sums will appear later in our repre-

sentation for the two-dimensional sums. The non-zero lattice sums are
‘nðbÞ ¼
X0
j2Z

eibajH0
nðajezÞ ¼ kn0

X1
j¼1

hnðkajÞðeibaj þ ð�1Þne�ibajÞ ð3:2Þ
with kn0 defined in (2.4). We introduce the quantities
bp ¼ bþ 2pp=a; p 2 Z ð3:3Þ
and when jbpj 6 k we define wp 2 ½0;p� via
cos wp ¼ bp=k: ð3:4Þ
Then it is known [16] that, provided jbpj–k for any p,
‘Jn ðbÞ � kn0

X1
j¼1

jnðkajÞðeibaj þ ð�1Þne�ibajÞ ¼ � dn0ffiffiffiffiffiffiffi
4p
p þ pinkn0

ka

X
jbp j<k

Pnðcos wpÞ ð3:5Þ
which expresses ‘Jn as a finite sum over propagating modes. The derivation of this result in [16] is by no means transparent,
involving as it does various scattering operators defined via infinite contour integrals. Here we present a more direct
derivation.

Using the Poisson summation formula in the form
P

jf ðjÞ ¼
P

p

R1
�1 f ðxÞ expð2ppixÞdx we can show that, for n P 0,
X
j2Z

jnðka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ �2

q
Þ

ðj2 þ �2Þn=2 eibaj ¼ p
knþ1a�n

X
jbp j<k

ðk2 � b2
pÞ

n=2Jn a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

p

q� �
; ð3:6Þ
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where we have used [22, 6.726(2)]. Taking the limit as �! 0 leads to
ðkaÞn

ð2nþ 1Þ!!þ
X0
j2Z

jnðkajjjÞ
jjjn

eibaj ¼ pan

2nn!knþ1a

X
jbp j<k

ðk2 � b2
pÞ

n
: ð3:7Þ
This is a special case of a more general formula given in [23]. The sum on the left-hand side is absolutely convergent for
n P 1 and we can differentiate n times with respect to b to yield
in
X0
j2Z

jnðkajÞeibaj ¼ p
2nn!knþ1a

X
jbp j<k

d
db

� �n

ðk2 � b2
pÞ

n
; n P 1 ð3:8Þ

¼ pð�1Þn

ka

X
jbp j<k

Pnðcos wpÞ; ð3:9Þ
using (A.1). This and (3.7) with n ¼ 0 yield (3.5).
Rapidly convergent series representations for the sums ‘Yn can be derived as follows. Using [24, 10.1.16] we have
‘nðbÞ ¼ kn0ð�iÞnþ1
Xn

s¼0

cnsðLþs ðbÞ þ ð�1ÞnL�s ðbÞÞ; ð3:10Þ
where
cns ¼
ðnþ sÞ!

2ss!ðn� sÞ!
and L�s ðbÞ ¼ is

X1
j¼1

eiðk�bÞaj

ðkajÞsþ1 : ð3:11Þ
Then
2i‘Yn ðbÞ ¼ ‘nðbÞ � ð�1Þn‘nðbÞ ð3:12Þ

¼ 2kn0ð�iÞnþ1
Xn

s¼0

cnsXs

ðkaÞsþ1 ½Clsþ1ðkaþ baÞ þ ð�1ÞnClsþ1ðka� baÞ�; ð3:13Þ
where
Xs ¼
is s even;
isþ1 s odd;

(
ð3:14Þ
and Clsð�Þ are the Clausen functions
Cl2mðxÞ ¼
X1
j¼1

sin jx

j2m ; Cl2mþ1ðxÞ ¼
X1
j¼1

cos jx

j2mþ1 : ð3:15Þ
Exponentially convergent series representations for these functions are given in Appendix B.
The lattice sum ‘0ðbÞ has a particularly simple representation:
‘0ðbÞ ¼
1

ka
ffiffiffiffiffiffiffi
4p
p ðMp� kaþ i log½2j cos ba� cos kaj�Þ; ð3:16Þ
where M is the number of integers p for which jbpj < k, which corresponds to the number of scattered modes in a diffraction
problem.

3.1. Singularities

From (3.13) and (3.15) it is clear that the sums ‘nðbÞ are singular when either ka� ba is an integer multiple of 2p. Note
that both cases can occur simultaneously if ka is an integer multiple of p. Eq. (3.5) shows that ‘Jn ðbÞ is finite for all b, though it
is discontinuous at the singularities of ‘Yn ðbÞ since the number of terms in the finite sum changes at these points. On the other
hand, from (3.13) and (B.1),
‘Yn ðbÞ ¼
inkn0

2ka
ðð�1Þn log½2� 2 cosðkaþ baÞ� þ log½2� 2 cosðka� baÞ�Þ þ b‘Yn ðbÞ; ð3:17Þ
where b‘Yn ðbÞ is non-singular.
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4. Two-dimensional lattice sums

4.1. Ewald representation

If we choose coordinates such that the lattice lies in the plane h ¼ p=2, then for any lattice vector Rpq, Ym
n ðR̂pqÞ ¼ 0 if nþm

is odd (see (A.7)), and so we have
rm
n ðbÞ ¼ 0; nþm odd: ð4:1Þ
Here and in what follows we have written the two lattice indices p and q explicitly rather than using a muti-index as in Sec-
tion 2.2.

Ewald representations for rm
n date back to the 1960s [25] and are fairly standard in the solid-state physics literature

where they are used to evaluate so-called structure constants in electron scattering theory [26, Chapter 15]; see also
[9,27]. The representations below make extensive use of the incomplete Gamma function Cðl; zÞwhich, unless l is a positive
integer, has a branch cut along the negative real axis. For negative real z we use the definition
Cðl; zÞ ¼ lim
�!0

Cðl; z� i�Þ: ð4:2Þ
We can thus write
rm
n ¼ rmð0Þ

n þ rmð1Þ
n þ rmð2Þ

n ; ð4:3Þ

where each of the terms on the right-hand side depends on an Ewald parameter g > 0, though their sum does not. In our
notation, we have, for nþm even,
rmð0Þ
n ¼ dn0dm0 �

1ffiffiffiffiffiffiffi
4p
p þ i

2p
X1
j¼0

ðk=2gÞ2j�1

j!ð1� 2jÞ

 !
¼ dn0dm0

4p
C �1

2
;� k2

4g2

 !
; ð4:4Þ

rmð1Þ
n ¼ � inþ1

2k2
A
ð�1ÞðnþmÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn�mÞ!ðnþmÞ!

p
�
X

Kpq2K�

X½ðn�jmjÞ=2�

j¼0

ð�1Þjðbpq=2kÞn�2jeimapqCj;pq

j!ð12 ðn�mÞ � jÞ!ð12 ðnþmÞ � jÞ!
cpq

2

� �2j�1

; ð4:5Þ

rmð2Þ
n ¼ � 2nþ1i

knþ1 ffiffiffiffi
p
p

X0
Rpq2K

Rn
pqeib�Rpq Ym

n ðR̂pqÞ
Z 1

g
e�R2

pqn2
ek2=4n2

n2ndn; ð4:6Þ
where  !

cpq ¼ cðbpq=kÞ; Cj;pq ¼ C

1
2
� j;

k2c2
pq

4g2 ; ð4:7Þ
and cð�Þ is defined in (A.9). The first exponential in the integral in (4.6) can be expanded as a power series to reduce the inte-
gral to a sum involving incomplete Gamma functions, but we prefer to use direct quadrature of the (exponentially conver-
gent) integral. If nk P Rpq, the integrand has extrema for real n and the uppermost of these occurs at the point n ¼ n0, where
n2
0 ¼

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � R2

pqk2
q

2R2
pq

: ð4:8Þ
If g < n0, separate quadratures are applied on the intervals ½g; n0� and ½n0;1Þ. A single integration by parts yields a recurrence
relation that can be used to increase efficiency when calculating rm

n for more than one value of n.
Since Cðl; zÞ 	 zl�1e�z, the Ewald method involves exponentially convergent two-dimensional sums, which is attractive.

On the other hand the computation of the incomplete Gamma function with negative real argument is not straightforward.
When jxj < 2 we use a series expansion (the second series in equation (2) of [10]) for Cðl; xÞ which converges monotonically
provided jxj < 1 but cannot be used effectively for large jxj. Since the modulus of any negative real argument in (4.7) is al-
ways less than k2

=4g2, this puts a restriction on the Ewald parameter g. When jxjP 2 the incomplete Gamma function is
computed using the NAG library routine S14BAF if l > 0 and via direct quadrature of the integral definition when l 6 0. This
may not be optimal, but it is hard to see how it could be improved on significantly.

The Ewald method involves the numerical evaluation of two-dimensional sums and the order in which the terms are ta-
ken needs to be addressed. The natural ordering of terms is such that bpq or Rpq increases monotonically, but arranging terms
in this way is computationally expensive, and so we use an alternative approach, the essence of which is as follows. For a
lattice with basis vectors c1 and c2 we define the sequence of perimeters Pn (each of which is a set of lattice points) via
Pn ¼ fjc1 þ pc2 : j 6 n; p 6 n; ðj� nÞðp� nÞ ¼ 0g ð4:9Þ
and then sum around P1;P2;P3; . . ..
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To improve the efficiency in evaluating rmð2Þ
n we can derive an upper bound for the magnitude of the contribution from

each point using the fact that
Rn
pq

Z 1

g
e�R2

pqn2
ek2=4n2

n2ndn

���� ���� 6 Rn
pqek2=4g2

Z 1

g
e�R2

pqn2
n2ndn ¼ ek2=4g2

2Rnþ1
pq

C nþ 1
2
;R2

pqg
2

� �
: ð4:10Þ
The expression on the right-hand side is monotonically decreasing in Rpq and hence if (4.10) predicts that a term is negligible
(by which we mean that its magnitude relative to the sum is smaller than machine precision), then all terms with larger val-

ues of Rpq are also negligible. A similar approach can be used when computing rmð1Þ
n . There are a finite number of terms for

which cpq is not real and these must always be included in the summation. For the other terms we can obtain an upper bound
on the summand by noting that for j P 0 and x > 0,
C
1
2
� j; x

� �
¼
Z 1

x
t�j�1=2e�tdt 6 x�j�1=2

Z 1

x
e�tdt ¼ x�j�1=2e�x: ð4:11Þ
In this case, the upper bound (as a function of bpq) has turning points and these must be taken into account when using the
bound to discard subsequent terms.

The value of the parameter g has a significant effect on the performance of the Ewald representation. The exponential
convergence in (4.6) is due to the term expð�R2

pqn
2Þ that appears in the integrand, and since the lower limit for n is g, we

can estimate that the convergence rate of the two-dimensional sum for rmð2Þ
n is proportional to expð�R2

pqg2Þ. Similarly, in

(4.5), if we assume that kcpq 
 bpq, we see that the convergence rate for rmð1Þ
n can be estimated as expð�b2

pq=ð4g2ÞÞ. Thus,
increasing g improves the convergence in (4.6) but is detrimental to that in (4.5). Ideally, we should choose the Ewald
parameter to balance the two convergence rates, but this is difficult given the two-dimensional nature of the summations.
Instead, we set the value using the shorter of the lattice basis vectors; thus
g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pbm=am

q
; ð4:12Þ
where
am ¼minfa1; a2g and bm ¼minfb1; b2g: ð4:13Þ
Note that the integrals in (4.6) are independent of m, whereas the incomplete Gamma functions in (4.5) are independent of
both m and n. Furthermore, if we change Rpq to �Rpq and m to �m in (4.6) and then take the complex conjugate we see that
rmð2Þ
n ¼ �r�mð2Þ

n ð4:14Þ
in view of (2.5). As it is usual in applications to have to calculate rm
n for all n and m such that 0 6 jmj 6 n 6 N for some fixed

N, these facts can be used to gain a considerable increase in efficiency. For small k (low frequency), rmð1Þ
n also satisfies (4.14)

because if c2
pq P 0, then Cj;pq 2 R.

4.2. Regular lattice sums

Another check on our computations is provided by the identity
rmJ
n ðbÞ ¼ �

dn0dm0ffiffiffiffiffiffiffi
4p
p þ 2pin

kA

X
bpq<k

Ym
n ðf̂pqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � b2
pq

q ; nþm even; ð4:15Þ
where kf̂pq ¼ bpq þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

pq

q
ez and the coordinates are as in Section 4.1. Equivalent versions of this formula can be found in

[3,12]; we will not re-derive it here. From (2.23) we then get, for nþm even
rm
n ðbÞ þ r�m

n ðbÞ ¼ �
dn0dm0ffiffiffiffi

p
p þ 4pin

kA

X
bpq<k

Ym
n ðf̂pqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � b2
pq

q : ð4:16Þ
4.3. Lattice reduction

The basic idea here is to express the two-dimensional lattice sum as a sum of one-dimensional sums. We choose to make
the polar axis of the spherical coordinate system parallel to one of the lattice vectors so that the reduced one-dimensional
lattice sum takes a particularly simple form. Thus we write a1 ¼ a1ez and a2 ¼ g1ez þ g2ey, with g2 > 0. The reciprocal lattice
vectors are then b1 ¼ ð1=a1g2Þðg2ez � g1eyÞ and b2 ¼ ð1=g2Þey. We set b ¼ n1ez þ n2ey and we have
Rpq ¼ ðpa1 þ qg1Þez þ qg2ey; bpq ¼ n1pez þ
1
g2
ðwp þ 2qpÞey; ð4:17Þ
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where we have written
n1p ¼ n1 þ
2pp
a1

; wp ¼ n2g2 �
2ppg1

a1
: ð4:18Þ
Then, from (2.18),
rm
n ðbÞ ¼

X0
1

p¼�1
eib�Rp0Hm

n ðRp0Þ þ
X0
1

q¼�1

X1
p¼�1

eib�RpqHm
n ðRpqÞ ð4:19Þ

¼ ‘nðn1Þdm0 þ
X0
1

q¼�1
eiqðn1g1þn2g2Þ

X1
p¼�1

eipn1a1Hm
n ðRpqÞ; ð4:20Þ
where ‘nðn1Þ is a one-dimensional lattice sum as in Section 3.
The lattice sums rm

n considered this section are not the same as the sums rm
n considered in Section 4.1 due to the different

orientation of the spherical coordinate system in the two cases. However, we can reconstruct one from the other using rota-
tion matrices; see Appendix C. For q–0, the azimuthal angle of the lattice vector Rpq is either �p=2 or þp=2 depending on
whether q > 0 or q < 0, respectively, and it follows that in this case H�m

n ðRpqÞ ¼ Hm
n ðRpqÞ. Thus the lattice sums considered in

this section have the property that
rm
n ðbÞ ¼ r�m

n ðbÞ: ð4:21Þ
We now insert into the sum over p in (4.20) the integral representation
hnðkrÞPm
n ðcos hÞ ¼ ð�iÞnþ1

p

Z 1

�1
eikztKmðkqcðtÞÞPm

n ðtÞdt; ð4:22Þ
where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2
p

> 0, cð�Þ is as defined in (A.8), Kmð�Þ is a modified Bessel function, and we have used (A.10). This follows
from, for example, [28, Thm A1] (note the extra ð�1Þm in the definition of Pm

n used in that paper). Our choice of definition for
Pm

n ðzÞ is largely motivated by the simple form that this representation now takes. The sum over p becomes
ð�iÞnþmþ1ðsgnqÞm knm

p
X1

p¼�1
eipn1a1

Z 1

�1
eiktðpa1þqg1ÞKmðkg2jqjcðtÞÞP

m
n ðtÞdt

¼ �2inþmþ1

ka1
ðsgnqÞmknm

X1
p¼�1

e�in1pqg1 Kmðkg2jqjcpÞP
m
n ðn1p=kÞ; ð4:23Þ
on using the Poisson summation formula. Here cp ¼ cðn1p=kÞ. Then (4.20) becomes
rm
n ðbÞ ¼ ‘nðn1Þdm0 �

2inþmþ1

ka1
knm

X1
p¼�1

Pm
n ðn1p=kÞ

X1
q¼1

½eiqwp þ ð�1Þme�iqwp �Kmðkg2qcpÞ: ð4:24Þ
The reduction (4.24) is equivalent to that carried out in [3, Section 2B] for the rectangular lattice.
If jn1pj 6 k we define the angles vp 2 ½0;p� via
cosvp ¼ n1p=k: ð4:25Þ
Then if we separate the contributions from the propagating (jn1pj < k) and evanescent modes we have
rm
n ðbÞ ¼ ‘nðn1Þdm0 þHm

n þ Km
n ; ð4:26Þ
where (using [24, 9.6.4] to write the modifed Bessel function of imaginary argument in terms of the Hankel function of the
first kind Hn � Hð1Þn ),
Hm
n ¼

pin

ka1
ð�1Þmknm

X
jn1p j<k

Pm
n ðcosvpÞ

X1
q¼1

½eiqwp þ ð�1Þme�iqwp �Hmðkg2q sinvpÞ ð4:27Þ

¼ pin�m

ka1

X
jn1p j<k

Ym
n ðfpÞSmðwp; kg2 sinvpÞ; ð4:28Þ
with fp ¼ sinvpey þ cos vpez, and
Km
n ¼ �

2inþmþ1

ka1
knm

X
jn1p j>k

Pm
n ðn1p=kÞ

X1
q¼1

½eiqwp þ ð�1Þme�iqwp �Kmðkg2qcpÞ: ð4:29Þ
Since [24, 9.7.2] KmðxÞ 	
ffiffiffiffiffiffiffiffiffiffiffi
p=2x

p
expð�xÞ, the sums in (4.29) decay exponentially with respect to both jpj and q. The sum Sm in

(4.28) (which is a type of Schlömilch series, [29, Chap. XIX]) is in the form of a one-dimensional lattice sum for the two-
dimensional Helmholtz equation and can be evaluated efficiently using expressions originally derived in [17]; see Appendix
D. Note that the Schlömilch series in (4.28) and the sums over q in (4.29) are independent of n.
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From (2.23) and (4.26) we can obtain an expression for rmJ
n as a finite sum. It is easy to show that ð�1ÞnþmK�m

n ¼ �Km
n and

‘n þ ð�1Þn‘n ¼ 2‘Jn , where ‘Jn is given as a finite sum in (3.5). We also have
Hm
n þ ð�1ÞnþmH�m

n ¼ pin�m

ka1

X
jn1p j<k

Ym
n ðfpÞðSm þ ð�1ÞmSmÞ; ð4:30Þ
the arguments of the sums being as in (4.28). It follows from (D.2,D.4) and (D.5) that
Sm þ ð�1ÞmSm ¼ �2dm0 þ 4im
X
bpq<k

cos mDpq

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

pq

q ; ð4:31Þ
where Dpq is defined by
cos Dpq ¼
wp þ 2qp
kg2 sin vp

; sin Dpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

pq

q
k sin vp

: ð4:32Þ
The contribution that comes from the Kronecker delta in (4.31) cancels with the sum from (3.5) and we find that
rmJ
n ðbÞ ¼ �

dm0dn0ffiffiffiffiffiffiffi
4p
p þ 2pin�mknm

ka1g2

X
jn1p j<k

Pm
n ðn1p=kÞ

X
bpq<k

cos mDpqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

pq

q : ð4:33Þ
Since jn1pj < k is necessarily true if bpq < k, this can be simplified to
rmJ
n ðbÞ ¼ �

dm0dn0ffiffiffiffiffiffiffi
4p
p þ 2pin�mknm

ka1g2

X
bpq<k

Pm
n ðn1p=kÞ cos mDpqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � b2
pq

q : ð4:34Þ
4.4. Singularities

From (4.15) it is easy to see that the two-dimensional sums rmJ
n ðbÞ are singular whenever there are integers p and q such

that bpq ¼ k. It turns out that these are the only singularities of rm
n ðbÞ, though this is not immediately apparent. On the other

hand, it is clear from the representation (4.26) that the individual terms on the right-hand side have other singularities,
which must therefore cancel out. The series used to define Hm

n and Km
n are both singular if jn1pj ¼ k for some p (since

sinvp ¼ icp ¼ 0 at these points). These singularities must cancel with those from ‘nðn1Þ.
In order to determine the singular behaviour of Hm

n and Km
n near these points we make a slight change in definition. Thus

instead of splitting the sum over p in (4.24) into parts for which jn1pj is greater or less than k, we write
Hm
n ¼

pin

ka1
ð�1Þmknm

X
jn1p j<kþ�

Pm
n ðn1p=kÞSmðwp; ikg2cpÞ; ð4:35Þ
where 0 < � < 2pp=a1. In this way all the singularities are in the Hm
n terms. Likewise, in (4.29), the limits for the sum over p

are now jn1pjP kþ � and so this series (which we write as bKm
n ) is exponentially convergent for all parameter values. Note

that icp is either positive real or positive imaginary, but the series given in Appendix D are valid in either case.
The quantity Hq, defined in (D.3), when k ¼ wp and l ¼ ikg2cp, is given by
i½ðwp þ 2qpÞ2 þ g2
2ðn

2
1p � k2Þ�1=2 ¼ ig2ðb

2
pq � k2Þ1=2 ð4:36Þ
(either positive real or positive imaginary) and this clearly vanishes whenever there are integers p and q such that bpq ¼ k,
just as in (4.15). These are the actual singularities of rm

n .
The sums Sm with m > 0 in (4.35) have singularities as cp ! 0 which come from the finite sums in (D.4) and (D.5) and

which are Oðc�m
p Þ. However, these singularities are cancelled by the factor cm

p which comes from the associated Legendre
functions; see (A.10). In view of this, the only other singularities of Hm

n come from the logarithmic terms in the series for
S0 and so we choose to write
Hm
n ¼ bHm

n � dm0
inþ1

ka1
kn0

X
jn1p j<kþ�

Pnðn1p=kÞ log
g2

2

16p2 ðk
2 � n2

1pÞ
� �

; ð4:37Þ
where bHm
n is bounded in the limit jn1pj ! k. The imaginary part of the logarithm is either 0 or p.

Finally, we collect together our results and rewrite (4.26) using (3.5,3.17) and (4.37):
rm
n ðbÞ ¼ bHm

n þ bKm
n þ dm0 �

dn0ffiffiffiffiffiffiffi
4p
p þ ib‘Yn ðn1Þ þ

inþ1kn0

2ka1
Q n

 !
; ð4:38Þ
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where
Table 1
Selected
coordin

n

0
1
2
2
8
8
8
9
9
9

Qn ¼ ð�1Þn log½2� 2 cosðka1 þ n1a1Þ� þ log½2� 2 cosðka1 � n1a1Þ� �
X

jn1p j<kþ�
2Pnðn1p=kÞ log

g2
2

16p2 ðk
2 � n2

1pÞ
� �

� 2pi
X
jn1p j<k

Pnðn1p=kÞ; ð4:39Þ
which is regular for all values of n1. Contributions from the imaginary part of the logarithm in the first sum on the right-hand
side (from terms for which k < jn1pj < kþ �) can be included in the second sum. After simplification we obtain
Qn ¼ ð�1Þn log½2� 2 cosðka1 þ n1a1Þ� þ log½2� 2 cosðka1 � n1a1Þ�

�
X

jn1p j<kþ�
Pnðn1p=kÞ 2piþ log

g2

4p

	 
4
ðk2 � n2

1pÞ
2

� �� �
; ð4:40Þ
where all the logarithms are now real.
There is a decision to make in choosing the parameter �, arising from the fact that any term with jn1pj > k can be included

either in (4.29) or (4.35). We use � ¼ 1=g2 which ensures rapid convergence in all of the sums over q in (4.29).

5. Numerical results

Numerical calculations for lattice sums over sheets of spheres have been performed by Enoch et al. [12], though the
authors report only limited accuracy due to time restrictions brought about by their use of Mathematica. By contrast, our
program code is written entirely in Fortran 2003 and can rapidly calculate the lattice sums with great precision. In addition,
Enoch et al. noted a significant decrease in precision in calculating rm

n as n is increased; our program codes exhibit no such
deficiency. Table 1 shows selected values of rm

n . The parameters are taken from Enoch et al. but the results are typical of
those that our program codes generate. The values shown are for the case where the axis of the spherical coordinate system
is orthogonal to the lattice, and so rm

n ¼ 0 if nþm is odd, and in addition r�m
n ¼ �rm

n for n > 0. In the first column we have
reproduced the values given by Enoch et al. and in the second we give our calculations to 10 significant figures in both the
real and imaginary parts. The error estimate in the final column is the percentage by which the our computations using
the Ewald formula differ from those using the reduction formula. This is a fairly rigorous test of accuracy, given the fact that
the two methods are entirely different.

Fig. 1 shows performance data for the Ewald and reduction formulae. The quantity plotted is the logarithm of the reci-
procal of the time taken to evaluate all non-zero values of rm

n with n 6 5 (of which there are 36) for fixed values of a1, a2

and b, with varying k. Calculations were repeated many times to get an accurate measurement of performance. The program
was run in double precision on a 2.1 GHz machine and the largest percentage discrepancy between the Ewald and reduction
methods encountered in any calculation was 0:28� 10�8. In both cases, the Ewald method performs consistently, for k < 4:6.
For k > 4:6, (4.12) gives g < k=

ffiffiffi
8
p

, which in turn leads to the necessity of evaluating Cðl; xÞ with x < �2, and we choose not
to permit this. Instead, the value g ¼ k=

ffiffiffi
8
p

is used, and the performance begins to deteriorate as the convergence rate of the
series for rmð1Þ

n slows.
The dominant factor in determining the performance of the reduction method was found to be the number of

Schlömilch series that must be evaluated when computing (4.35). Thus, the dashed vertical lines in the figure show where
a term is transferred from (4.29) to (4.35). Best performance is observed to the left of the first line, where (4.35) has no
terms. The subsequent peak at k ¼ 1:8 corresponds to a removable singularity; here the infinite series in (D.4) and (D.5)
disappear, unless m ¼ 0, in which case an exact evaluation in terms of the polygamma function is available. Given that the
removable singularities are logarithmic in nature, the value 1=g2 that we used for � in (4.35) could be considered too con-
values of rm
n for a1 ¼ ½1;0�, a2 ¼ ½0:65;0:81�, k ¼ 2p=7:69 and b ¼ ½0:37;0:79�. The results shown are for the case where the axis of the spherical

ate system is orthogonal to the lattice.

m rm
n [Enoch et al.] rm

n % error

0 �0.282095 �7.30057i �0.2820947918 �7.300570977i 7:0� 10�12

1 �4.37786 �9.49568i �4.377846777 �9.495715723i 4:4� 10�12

0 8.03245i 8.033506836i 3:2� 10�12

2 �10.9071 �7.05139i �10.90806851 �7.050489899i 3:7� 10�12

0 �33221096.96i 1:5� 10�13

4 21338984.36 �3037078.345i 1:4� 10�13

8 477641.3476 19002073.85i 2:2� 10�13

1 �3433917.370 �335677297.6i 3:2� 10�13

5 233343355.6 233273886.3i 7:2� 10�14

9 �315405665.6 267897011.8i 3:5� 10�13



Fig. 1. Plots showing evaluations per second of rm
n for all n 6 5 and �m 6 n 6 m performed using the different methods. The parameter values used are

a1 ¼ ½1; 0�, a2 ¼ ½0:2;1:2�, and b ¼ ½1:8;0:6�. Note that the vertical axis is shown on a logarithmic scale. Unshaded circles denote results obtained using the
Ewald method with recurrence relations for the integrals in rmð2Þ

n and incomplete gamma functions in rmð1Þ
n . Shaded circles denote results obtained with the

recurrence relations disabled.
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servative; using a smaller value would significantly increase performance for 0:9 < k < 1:8� � without adversely affecting
precision.

The most complicated object in any of the summands is the Schlömilch series in (4.28). As noted in Appendix D there are
several ways to compute these, though it should be noted that calculations at ‘unusual’ parameter values (eg. with k complex
or equal to zero) are required. We calculate these series via the dual series/Twersky method with convergence acceleration
using Kummer’s transformation as described in [30].

6. Conclusion

We have developed accurate and efficient computational schemes for the calculation of lattice sums for the three-dimen-
sional Helmholtz equation. For one-dimensional lattices we have used a representation in terms of a finite sum of Clausen
functions and provided exponentially convergent series representations for these functions. For two-dimensional lattices we
have compared two approaches: the well-known Ewald representation and the lattice reduction approach in which the two-
dimensional sums are expressed as a sum of one-dimensional lattice sums.

The only disadvantage of the reduction method would appear to be the presence of removable singularities as described
in Section 4.4, which complicates the program code. On the other hand lattice reduction has three significant advantages.
First, it imposes a simple preferred ordering on the terms in the two-dimensional sums, expressing these as one-dimensional
sums of one-dimensional sums. The second advantage is the relative simplicity of the objects to be summed, largely consist-
ing of exponentials and standard special functions. Consequently, it is relatively easy to control the precision level of this
method. Finally, and perhaps most importantly, the reduction method leads to an order-of-magnitude improvement in per-
formance over the well-known Ewald method.
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Appendix A. Associated Legendre functions

The associated Legendre function is defined here, for non-negative order and jxj 6 1, by
Pm
n ðxÞ ¼ ð1� x2Þm=2 dm

dxm
PnðxÞ ¼

ð1� x2Þm=2

2nn!

dmþn

dxmþn
ðx2 � 1Þn; n P m P 0 ðA:1Þ

¼ ð1� x2Þm=2

2n

X½ðn�mÞ=2�

s¼0

Cm
nsx

n�m�2s; ðA:2Þ
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where
Cm
ns ¼

ð�1Þsð2n� 2sÞ!
s!ðn� sÞ!ðn� 2s�mÞ! : ðA:3Þ
This is the convention adopted in [20]. It differs by a factor of ð�1Þm (sometimes referred to as the Condon-Shortley phase)
from the definition used in [22,24]. If m > n, Pm

n ðxÞ � 0. The extension to negative order is accomplished via
P�m
n ðxÞ ¼ ð�1Þm ðn�mÞ!

ðnþmÞ! Pm
n ðxÞ; n P jmj; ðA:4Þ
and we note that
Pm
n ð�xÞ ¼ ð�1ÞnþmPm

n ðxÞ; ðA:5Þ
Pm

n ð�1Þ ¼ ð�1Þndm0 ðA:6Þ

Pm
n ð0Þ ¼

0 nþm odd
ð�1Þðn�mÞ=2ðnþmÞ!

2nððn�mÞ=2Þ!ððnþmÞ=2Þ! nþm even:

8<: ðA:7Þ
Eq. (A.1) can easily be used to define a function of arbitrary complex argument by using the function cðzÞ defined via
cðzÞ ¼ ðz� 1Þ1=2ðzþ 1Þ1=2
; �3p

2
< argðz� 1Þ < p

2
; �p

2
< argðzþ 1Þ < 3p

2
; ðA:8Þ
which corresponds to taking branch cuts along ð1;1þ i1Þ and ð�1;�1� i1Þ. In particular, for real argument we have
cðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p

jtjP 1

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

jtj < 1:

(
ðA:9Þ
Thus we define
Pm
n ðzÞ ¼ ½icðzÞ�

m dm

dzm
PnðzÞ; n P m P 0; ðA:10Þ
with (A.4) serving to define the extension to negative m. Note that this function is not the usual associated Legendre function
found in books since the branch cut is normally taken along the interval ð�1;1Þ of the real axis.

For the purposes of numerical evaluation, we in fact work with the normalised associated Legendre function knmPm
n ðzÞ and

the formula (A.2). Then, to calculate the first term in the series, we write
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ!
ðnþmÞ!

s
Cm

n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nÞ!
n!n!

� ð2nÞ!
ðnþmÞ!ðn�mÞ!

s
; ðA:11Þ
because both terms on the right-hand side can be written as a product of j consecutive integers divided by j!. This avoids the
need to compute ratios of very large integers, which is attractive from a numerical point of view. Subsequent terms in the
series are obtained using recurrence relations.

Appendix B. Clausen functions

We have the closed form sum [22, 1.441(2)]
Cl1ðxÞ �
X1
j¼1

cos jx
j
¼ �1

2
logð2� 2 cos xÞ; ðB:1Þ
valid for all x except multiples of 2p, and the alternative representation [22, 1.518(1)]
Cl1ðxÞ ¼ � log x�
X1
j¼1

ð�1ÞjB2jx2j

2jð2jÞ! ; 0 < x < 2p; ðB:2Þ
as a rapidly converging series involving the Bernoulli numbers B2j. This series representation allows us to derive series rep-
resentations for all the Clausen functions by repeated integration. Thus we can show that, for n P 2, and 0 6 x 6 2p,
ClnðxÞ ¼ Xn
xn�1

ðn� 1Þ! log x�
Xn�1

s¼1

1
s

 !
þ
X1
j¼1

ð�1ÞjB2jx2jþn�1

2jð2jþ n� 1Þ! �
X½ðn�1Þ=2�

j¼1

ð�1Þjfð2jþ 1Þ
ðn� 2j� 1Þ! xn�2j�1

" #
; ðB:3Þ
where Xn is defined in (3.14). This formula is unsuitable for numerical computation when p < x 6 2p; instead we use the
fact that ClnðxÞ ¼ ð�1Þnþ1Clnð2p� xÞ when x is in this range.
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The sums derived above can all be accelerated. The infinite sum over j in (B.3) is
X1
j¼1

ð�1ÞjB2jx2jþn�1

2jð2jþ n� 1Þ! ¼ �xn�1
X1
j¼1

ð2jÞ!fð2jÞ
jð2jþ n� 1Þ!

x
2p

	 
2j

¼ �xn�1
X1
j¼1

ð2jÞ!ðfð2jÞ � 1Þ
jð2jþ n� 1Þ!

x
2p

	 
2j
� xn�1

X1
j¼1

ð2jÞ!
jð2jþ n� 1Þ!

x
2p

	 
2j
: ðB:4Þ
The first sum now decays exponentially (since fð2jÞ � 1 ¼ ð1=2Þ2j þ ð1=3Þ2j þ � � �) and the second can be evaluated in closed
form (the case n ¼ 2 was considered in [31]. We define
gm ¼
X1
j¼1

ð2jÞ!h2j

jð2jþmÞ! ¼ 2
X1
j¼1

h2j

2jð2jþ 1Þ . . . ð2jþmÞ ¼ 2
X1
j¼1

h2j
Xm

q¼0

aqm

2jþ q
; ðB:5Þ
where
aqm ¼
ð�1Þq

q!ðm� qÞ! : ðB:6Þ
We have the standard expansions
logð1� xÞ ¼ �
X1
j¼1

xj

j
; log

1þ x
1� x

� �
¼ 2

X1
j¼0

x2jþ1

2jþ 1
ðB:7Þ
and so
gm ¼
X½m=2�

s¼0

a2s;m

X1
j¼1

h2j

jþ s
þ 2

X½ðm�1Þ=2�

s¼0

a2sþ1;m

X1
j¼1

h2j

2jþ 2sþ 1
ðB:8Þ

¼
X½m=2�

s¼0

a2s;m

h2s

X1
j¼sþ1

h2j

j
þ 2

X½ðm�1Þ=2�

s¼0

a2sþ1;m

h2sþ1

X1
j¼sþ1

h2jþ1

2jþ 1
ðB:9Þ

¼
X½m=2�

s¼0

a2s;m

h2s � logð1� h2Þ �
Xs

j¼1

h2j

j

 !
þ

X½ðm�1Þ=2�

s¼0

a2sþ1;m

h2sþ1 log
1þ h
1� h

� �
� 2

Xs

j¼0

h2jþ1

2jþ 1

 !
: ðB:10Þ
In particular
g1 ¼ 2� logð1� h2Þ � 1
h

log
1þ h
1� h

� �
; ðB:11Þ

g2 ¼
3
2
� 1þ h2

2h2 logð1� h2Þ � 1
h

log
1þ h
1� h

� �
; ðB:12Þ

g3 ¼
6þ 11h2

18h2 � 3þ h2

6h2 logð1� h2Þ � 1þ 3h2

6h3 log
1þ h
1� h

� �
: ðB:13Þ
There is little to be gained in using this approach when calculating Clausen functions of order greater than four since the
series in (3.15) are rapidly convergent already.

Appendix C. Rotation of lattice sums

From [20] Appendix C it follows that
rm
n" ¼

Xn

‘¼�n

dm‘
n r‘

n!; ðC:1Þ
where rm
n" corresponds to the sums of Section 4.1 in which the polar coordinate axis is perpendicular to the lattice and r‘

n! to
those treated in Section 4.3 where the polar axis lies in the plane of the lattice and for which the coordinate system has been
rotated through an angle �p=2 about the y-axis. The elements of the (real) rotation matrix dm‘

n are given explicitly by
dm‘
n ¼

1
2n

Xn�‘
j¼0

ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ ‘Þ!ðn� ‘Þ!ðnþmÞ!ðn�mÞ!

p
ðn� ‘� jÞ!ð‘�mþ jÞ!j!ðnþm� jÞ! ; ‘�m P 0; ðC:2Þ
with
dm‘
n ¼ ð�1Þmþnd‘mn ; m� ‘ P 0; ðC:3Þ
¼ ð�1Þmþnd�m;�‘

n ; ‘�m 6 0; ðC:4Þ
¼ d�‘;�m

n ; m� ‘ 6 0: ðC:5Þ

We evaluate dm‘

n using recurrence relations as in [32] (note that the Euler angle b used in [32] is taken as positive clockwise).
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Appendix D. Schlömilch series

In (4.28) we have a sum of the form
Snðk;lÞ ¼
X1
j¼1

½eikj þ ð�1Þne�ikj�HnðljÞ: ðD:1Þ
This sum can be evaluated efficiently in many different ways. One can use integral representations [33,34] or Ewald repre-
sentations [35,36], but perhaps the simplest method is to use the series representations derived in [17], accelerated if nec-
essary [30]. One of the advantages of these series is that the singularities appear explicitly.

For the sum in (D.1) to exist, k must be real and without loss of generality we can assume that k 2 ½0;2pÞ. On the other
hand l can have a positive imaginary part (in which case the series converges exponentially; see [24, 9.2.3]. For simplicity
we will assume that l is either positive real or positive imaginary, since these are the only situations that arise here. Then
S0ðk;lÞ ¼ �1� 2i
p

C þ log
l

4p

	 

þ 2

H0
þ
X0
q2Z

2
Hq
þ i

pjqj

� �
; ðD:2Þ
where C 
 0 � 5772 is Euler’s constant and
Hq ¼ ðl2 � k2
qÞ

1=2
; kq ¼ kþ 2qp; ðD:3Þ
with Hq being either positive real or positive imaginary. Note that log l has imaginary part 0 or p=2, and in the latter case
(D.2) yields a purely imaginary result, which is consistent with (D.1). For s P 1, with the convention that sgnð0Þ ¼ þ1,
S2sðk;lÞ ¼ 2ð�1Þs
X
q2Z

1
Hq
½ðkq þ iHqÞ=l�2ssgnðqÞ þ i

p
Xs

m¼0

ð�1Þmðsþm� 1Þ!
ð2mÞ!ðs�mÞ!

4p
l

� �2m

B2m
k

2p

� �
; ðD:4Þ

S2s�1ðk;lÞ ¼ �2ið�1Þs
X
q2Z

1
Hq
½ðkq þ iHqÞ=l�ð2s�1ÞsgnðqÞ � 1

p
Xs�1

m¼0

ð�1Þmðsþm� 1Þ!
ð2mþ 1Þ!ðs�m� 1Þ!

4p
l

� �2mþ1

B2mþ1
k

2p

� �
; ðD:5Þ
where Bmð�Þ is a Bernoulli polynomial. It is clear that Snðk;lÞ is singular if either l ¼ 0 or Hq ¼ 0 for some integer q. Note that
for n > 0, ½ðkq þ iHqÞ=l�nsgnðqÞ 	 ðl=2kqÞn as l! 0. The expressions (D.2,D.4) and (D.5) can be considered as the analytic con-
tinuation of (D.1) into a cut l-plane.
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